

Bundesministerium für Bildung und Forschung

2016 SM H $\rightarrow \tau \tau$ Analysis 26th September 2016

Raphael Friese

INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (EKP) · FAKULTÄT FÜR PHYSIK

www.kit.edu

Higgs?

The Higgs mechanism is a way to explain the masses of the W and Z bosons by introducing a field with an energy ground state that is not symmetric under $SU(2)_L$ transformations

The Higgs coupling is

 $\propto m_v^2$ (for force mediating W & Z boson)

 $\propto m_f$ (for weakly interacting fermions)

Discovery of a new particle 4th of July 2012

3

Higgs Boson production

4

Higgs Boson decay modes

Higgs boson mean lifetime : $1.56 \times 10^{-22} s$

$Z \not \to \tau \tau$

- Highest irreducible background contribution
- Often in boosted Z+Jets topologies

Jets "faking" hadronic T decays - and some real ones

Institut für Experimentelle Kernphysik (EKP)

Tau reconstruction and identification

- start with jets with pT > 14 GeV
- "Hadron Plus Strips" algorithm
- Rejection against jets to reach high purity, e.g.
 - Cut-based isolation:

$$I_{\tau} = \sum_{\text{charged}, \Delta z < 0.2 \text{ cm}} p_{\text{T}} + \max\left\{0, \sum_{\gamma} p_{\text{T}} - \Delta\beta\right\}, \quad \Delta\beta = 0.46 \sum_{\text{charged}, \Delta z > 0.2 \text{ cm}} p_{\text{T}}.$$

- MVA based tau-ID
- MVA & cut based anti-electron ID
- MVA & cut based anti-muon ID

Reconstruction of the missing energy

- Missing transverse energy (MET):
 - momentum in plane perpendicular to beam axis, in theory equivalent to neutrino momentum
- A multivariate regression technique removes biasing effects and gives an estimation of phase space of the neutrinos

Raphael Friese

Bringing it all together: full reconstruction of the di-tau system

- di-tau decays result in 2 to 4 neutrinos in the final state
 - -> under-constrained problem
- 3 free parameters per tau decay
 - fraction of visible energy
 - azimuthal angle
 - invariant neutrino mass
- Additionally known: MET (2 parameters)
- Calculate probability of di-tau hypothesis to be true and π take the mass with the highest probability

Analysis strategy

- Selection depending on final state
- Starting the background estimation with simulated Events
- Applying a reasonable set of selection steps
- Data-Based background estimation techniques
- Cross check simulation in control regions

μ

Run 276458

lumi-section 315

event 400455718

inclusive

inclusive opposite charge

Events

muon isolation

Karlsruher Institut für Technologie

Karlsruher Institut für Technologie

Karlsruher Institut für Technologie

Selection steps

23

24 26.09.2016 Raphael Friese

Karlsruher Institut für Technologie

Karlsruher Institut für Technologie

Final selection in all four decay channels

bins with significant signal expectation blinded

Event categorization

Categorization in terms of jet multiplicity

Institut für Experimentelle Kernphysik (EKP)

Expected Significances with 12.9 fb⁻¹

Jet binned combined: 1.8	Channel		0 jets	1 je	t	> 1jet	
	$\mu\tau_{\textit{had}}$		0.37	0.48		0.72	
	$e au_{had}$		0.17	0.30		0.48	
	$ au_{had} au_{had}$		0.40	0.46		0.86	
	eμ		0.32	0.37		0.41	
Categorized combined: 3.3	Channel	0 jets		1jet low	1 jet high	> 1jet	VBF
	$\mu \tau_{had}$	0.37		0.64	1.31	0.60	0.97
	$e au_{_{had}}$	0.17		0.40	0.99	0.40	0.71
	$ au_{\textit{had}} au_{\textit{had}}$	0.40		0.63	1.7	0.70	0.94
	eμ	0.32		0.44	0.55	0.32	0.65

Thank you for your attention!