
$sin^2 \Theta_W$ and Z asymmetries from hadron colliders

CDF, D0, and also LHC have extracted weak mixing angle from Z/γ^* asymmetry measurements

Uncertainties at Tevatron dominated by statistical uncertainties, LHCb equally, ATLAS & CMS by PDF uncertainties.

Data-driven "PDF replica rejection" method applied by CDF

Complex measurements (in particular physics modelling) that are important to pursue, but precision of hadron colliders not yet competitive with LEP/SLD

+ Newest CDF result: 0.23221 ± 0.00046

Figure from LHCb 1509.07645

W mass: towards a first measurement at the LHC via decay to lepton + neutrino

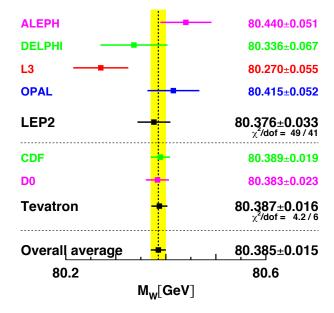
Brief history of W mass measurements:

- 1983 CERN SPS: W discovery
- 1983 UA1: $m_W = 81 \pm 5 \text{ GeV}$
- 1992 UA2 (with *m*_z from LEP): 80.35 ± 0.37 GeV
- 2013 LEP: 80.376 ± 0.033 GeV
- 2013 Tevatron: 80.387 ± 0.016 GeV
- World average: 80.385 ± 0.015 GeV

Quite a surprise that WA is dominated by hadron collider, which was not built with that goal in mind.

Hardest measurement in HEP: O(7) years to accomplish it

LHC also not built for W mass, but to discover new particles


Unfavorable environment at LHC compared to e+e- or proton-antiproton colliders

At Tevatron, W production dominated by valence quarks. At LHC sea & heavy quarks much more important

This difference affects all aspects of the measurement: detector calibration, transfer from Z to W, PDF uncertainties, W polarisation, modelling of p_T W

Very challenging — but also very interesting: a lot to learn on the way !

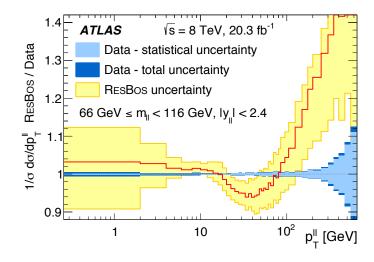
Current experimental picture for m_W

W mass: towards a first measurement at the LHC via decay to lepton + neutrino

ATLAS and CMS are progressing towards the m_W measurement at the LHC

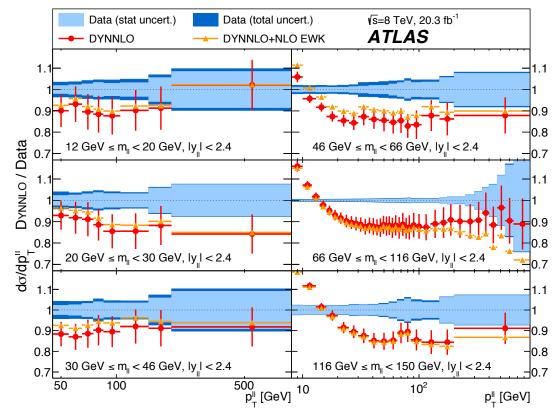
Measurement relies on excellent understanding of final state

Observables: $p_{T,\ell}$, $p_{T,\nu}$, m_T as probes of m_W


Challenges, high-precision:

- Momentum/energy scale (incl. had. recoil) calibration: Z, J/ ψ , Y
- Signal efficiency and background modelling
- Physics modelling:
 - Production governed by PDF & initial state interactions (pert & non-pert): use W⁺, W⁻, Z, W+c data for calibration, and NNLO QCD calculations + soft gluon resummation
 - o EW corrections well enough known
 - Probes very sensitive to W polarisation (and hence to PDF, including its strange density)

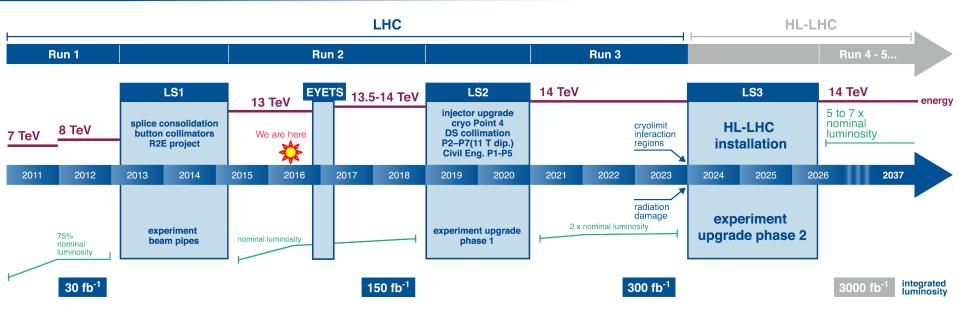
Project: Experiments are in a vigorous process of addressing the above issues. Many precision measurements (differential Z, W + X cross sections, polarisation analysis, calibration performance, ...) produced on the way. Also theoretical developments mandatory. **Long-term effort.**


Comprehensive Z p_T and polarisation measurements done by both CMS and ATLAS

ATLAS and CMS use precise measurements of $p_T(Z)$ to tune $p_T(W)$ modelling, which relies on NNLO and NNLL/resummed calculations. But: different generators predict different transfers from Z to W. Also: PDFs play different roles in Z and W production.

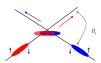
RESBOS: ISR at approximate NNLO, γ^* –Z interference at NLO, NNLL soft-gluon resummation, no FSR or hadronic event activity, CT14 PDF.

DYNNLO: QCD production at NNLO, no soft-gluon resummation, CT10 PDF.



The road to the future

The LHC Run-2 and beyond


LHC / HL-LHC Plan

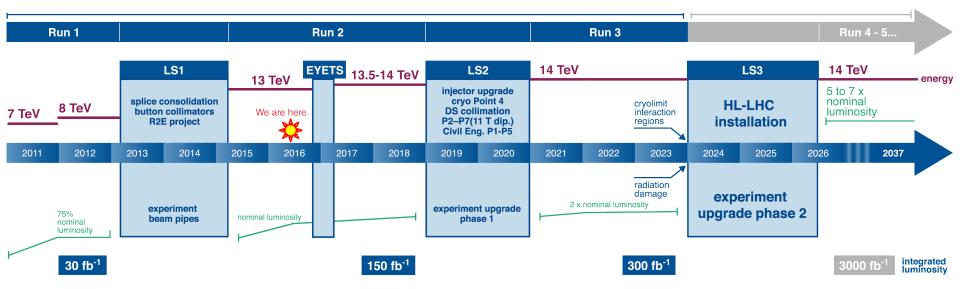
How can these LHC luminosity improvements be achieved?

Crab crossing: (deflects head and tail in opposite direction)

Run-1

- $E_{\text{beam}} = 0.45 4 \text{ TeV}$
- $L_{\rm max} = 0.8 \times 10^{34} \,{\rm cm}^{-2}{\rm s}^{-1}$
- $\Delta t_{\text{bunch}} = 50 \text{ ns}$
- $N_{\text{bunches,max}} = 1380$
- $\beta^* = 60 \text{ cm}$ [recall: $L \propto (\sigma_x \sigma_y)^{-1} = (\varepsilon_n \beta^* / \gamma)^{-1}$]
- Norm. emittance $\varepsilon_n \sim 2.3 \,\mu m$
- $N_{\text{protons / bunch}} \leq 1.7 \cdot 10^{11}$
- <µ> ~ 21 (note: µ_{peak} much larger)

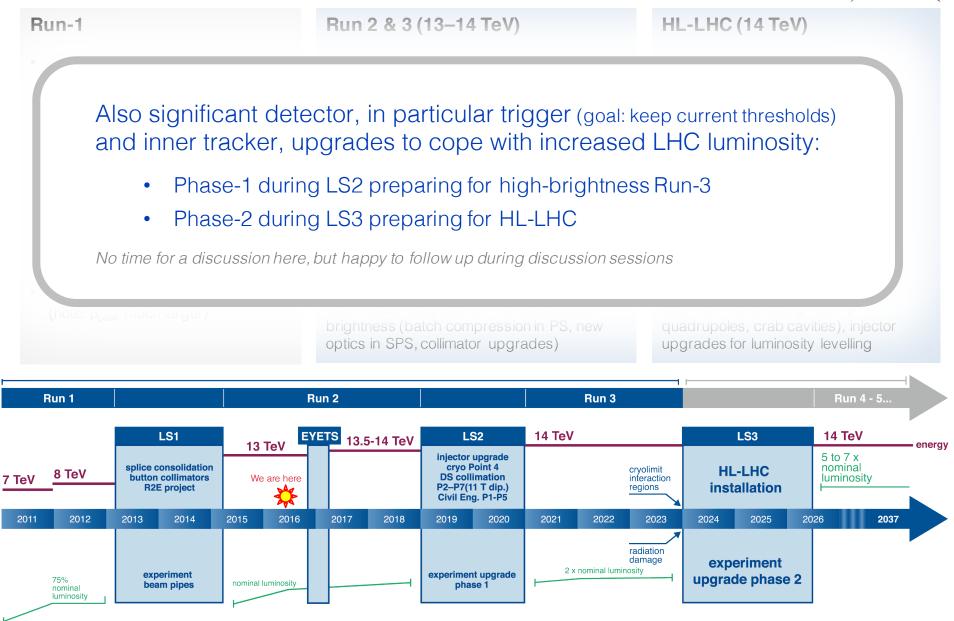
Run 2 & 3 (13–14 TeV)


- *E*_{beam} = 6.5–7 TeV
- $L_{\rm max} = 0.7 2 \times 10^{34} \, {\rm cm}^{-2} {\rm s}^{-1}$
- $\Delta t_{\text{bunch}} = 25 \text{ ns}$
- N_{bunches,max} = 2028~2748(?)
- $\beta^* = 40 \text{ cm}$
- $\varepsilon_n = 3.5 2.5 \,\mu\text{m}$ (2.3 μm with BCMS)
- $N_{\rm protons / bunch} \sim 1.2 \cdot 10^{11}$
- <µ> ~ 21~50

LS2: injector upgrade for increased beam brightness (batch compression in PS, new optics in SPS, collimator upgrades)

HL-LHC (14 TeV)

- $E_{\text{beam}} = 7 \text{ TeV}$
- $L_{\rm max} \sim 5 \times 10^{34} \,{\rm cm}^{-2}{\rm s}^{-1}$
- $\Delta t_{\text{bunch}} = 25 \text{ ns}$
- N_{bunches,max} = 2748
- $\beta^* = 15 \text{ cm}$
- $\varepsilon_n = 2.5 \,\mu\text{m}$
- $N_{\text{protons / bunch}} = 2.2 \cdot 10^{11}$
- <µ> ~ 140


LS3: new triplet design (low- β^* quadrupoles, crab cavities), injector upgrades for luminosity levelling

How can these LHC luminosity improvements be achieved?

Crab crossing: (deflects head and tail in opposite direction)

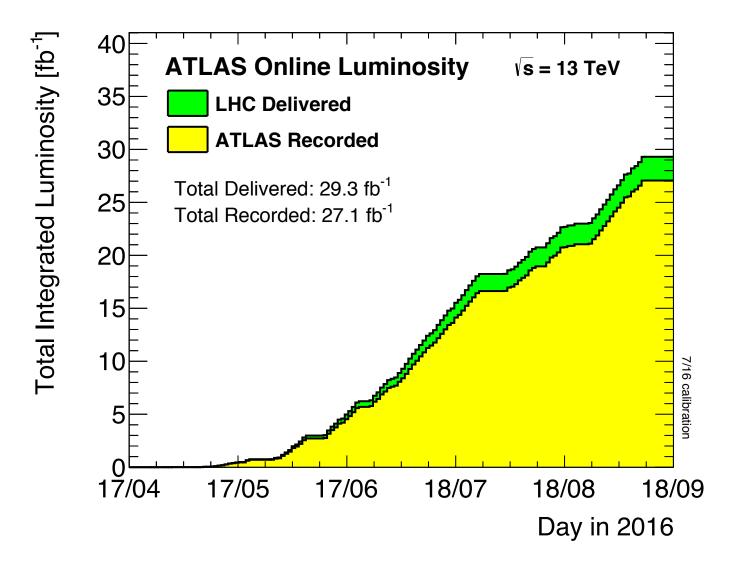
150 fb⁻¹

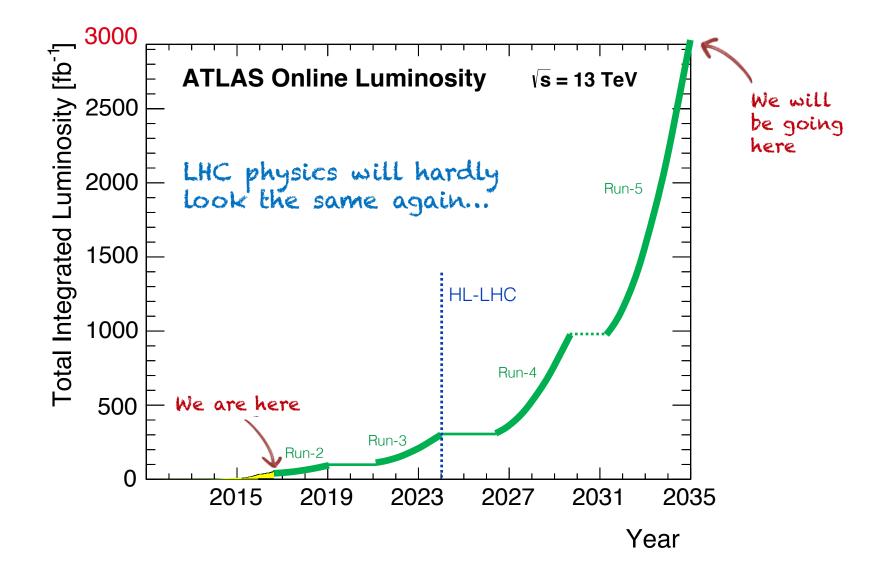
The main proton-proton physics goals in a nutshell

Run 1 (8 TeV)


- Discovery of Higgs boson
- Searches for additional new physics (negative)
- Observation of rare processes, such as $B_s \rightarrow \mu\mu$
- Precision measurements of Standard Model processes
- Study of *CP* asymmetries in *B_s* sector

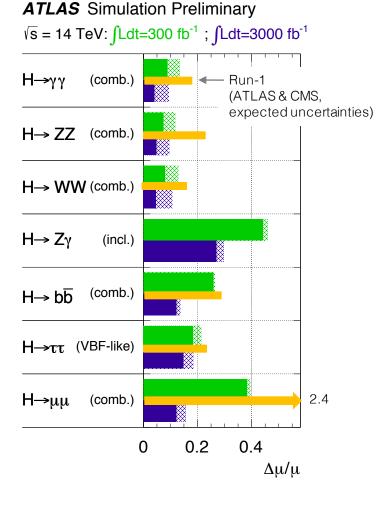
Run 2 & 3 (13–14 TeV)


- Searches for new physics
- Improved measurements of Higgs couplings in main channels
- Consolidation / observation of Higgs channels
- Measurement of rare Standard Model processes & more precision
- Improved measurements of rare *B* decays and *CP* asymmetries


HL-LHC (14 TeV)

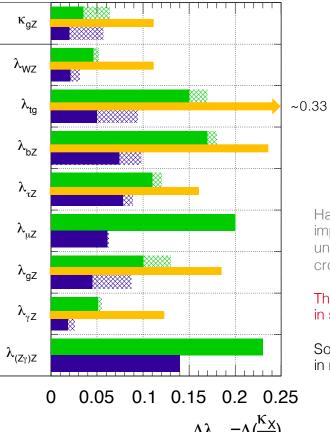
- Precision measurements of Higgs couplings
- Observation of very rare Higgs modes
- Ultimate new physics search reach (on mass & forbidden decays, eg, FCNC)
- Ultimate SM & HF physics precision for rare processes (VBS, aT/QGC, etc)

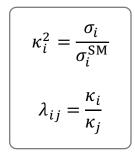
Status of Run-2 (19 Sep 2016)


Prospects for the LHC Run-2/3 and beyond (HL-LHC)

VERY brief set of example plots

Any detection of new physics would likely be a game changer !


(Conservative) extrapolation of Higgs coupling measurements

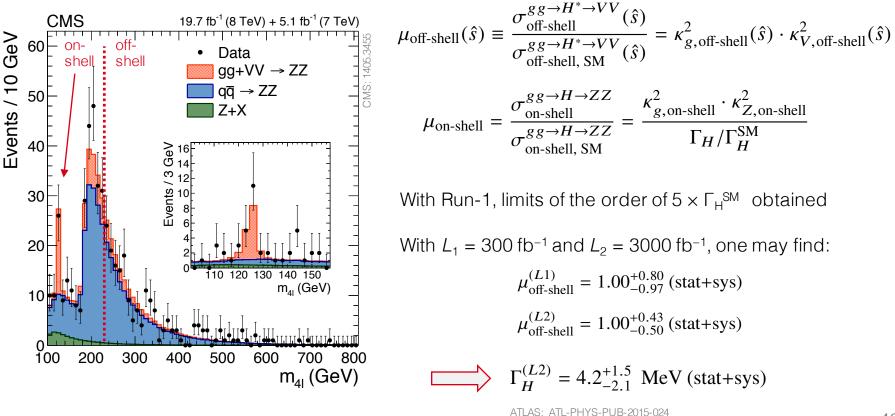

Higgs signal strengths (left) and ratios of coupling modifiers (right), compared to current precision (orange)

ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}$: $\int Ldt = 300 \text{ fb}^{-1}$; $\int Ldt = 3000 \text{ fb}^{-1}$

Hatched areas indicate impact of theoretical uncertainties on expected cross-sections

Theory uncertainty limiting in several cases

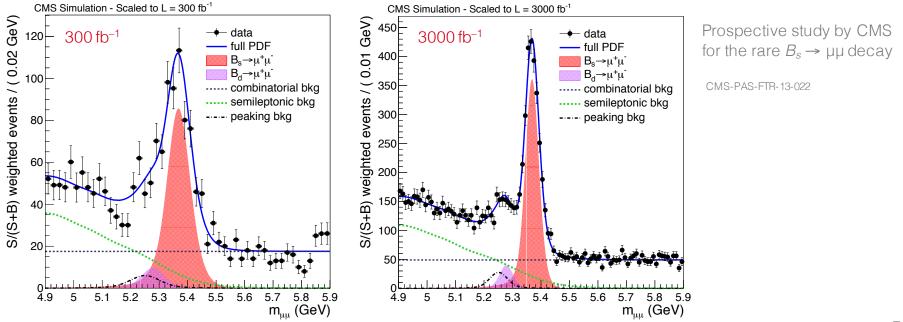

Some uncertainties cancel in ratios

 $\Delta \lambda_{XY} = \Delta (\frac{\kappa_X}{\kappa})$

Constraining the Higgs off-shell coupling

Both CMS and ATLAS have constrained the Higgs off-shell coupling and through this obtained upper limits on the Higgs total width $\Gamma_{\rm H}$

The method uses the independence of off-shell cross section on $\Gamma_{\rm H}$ and relies on identical on-shell and off-shell Higgs couplings. One can then determine $\Gamma_{\rm H}$ (=4.2 MeV in SM) from the measurements of $\mu_{\rm off-shell}$ and $\mu_{\rm on-shell}$



More Standard Model and Flavour physics

Continuous gain in precision and reach for rare or suppressed processes

High-profile flavour physics measurements (slower Run-2 luminosity rise for LHCb due to luminosity levelling, but upgrade to 40 MHz trigger readout during LS2 will increase, eg, the annual muonic B rate by factor of ten)

- Rare decays: $B_{(s)} \rightarrow \mu\mu$ and similar and $b \rightarrow s$ transitions: $B \rightarrow K^*\mu\mu$ and similar (LHCb, CMS, ATLAS)
- CP violation: ϕ_s (LHCb, CMS, ATLAS), γ and other CKM parameters (LHCb), also CPV in charm sector
- Lepton universality tests (LHCb)
- Spectroscopy (LHCb, CMS, ATLAS)

Conclusions

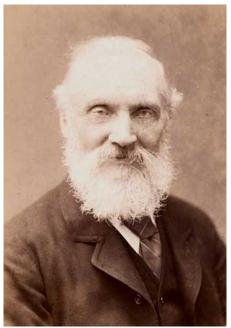
Conclusions

The LHC Run-2 is a key period for particle physics

- High CM energy and first 100 fb⁻¹ are critical for searches for new physics in all signatures
- Further consolidation of Higgs sector with observation and measurement of $H \rightarrow \tau \tau$ & bb, and ttH, as well as much more precise coupling and fiducial & differential cross section measurements
- The luminosity of Run-2 will hugely increase the amount of interesting Standard Model and flavour physics measurements that can be performed

Watch out:

- New physics does not necessarily appear at high mass, need to continue to search everywhere
- High precision measurements are key for a better knowledge of the Standard Model
- It is thereby extremely important to measure the detector performance in data as precisely as possible (This can often have priority over further improving the performance, example: b-tagging.)
- Many results are dominated by theoretical uncertainties. Need to produce measurements that allow to test theory, to improve PDFs, and that motivate theorists to improve calculations and event generators


Conclusions

Accurate and minute measurement seems to the non-scientific imagination, a less lofty and dignified work than looking for something new.

But [many of] the grandest discoveries of science have been but the rewards of accurate measurement and patient long-continued labour in the minute sifting of numerical results.

William Thomson Kelvin

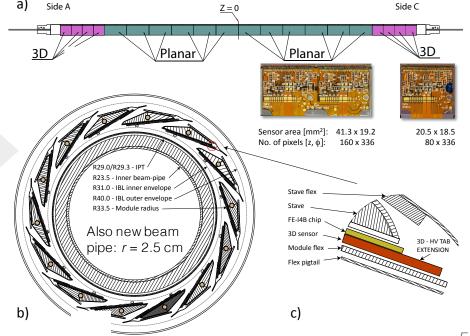
2 Aug 1871 in a speech to the British Association for the Advancement of Science

Lord Kelvin

Extra slides

ATLAS improvements for Run-2

Huge consolidation & improvement programme for detector, online, offline, computing

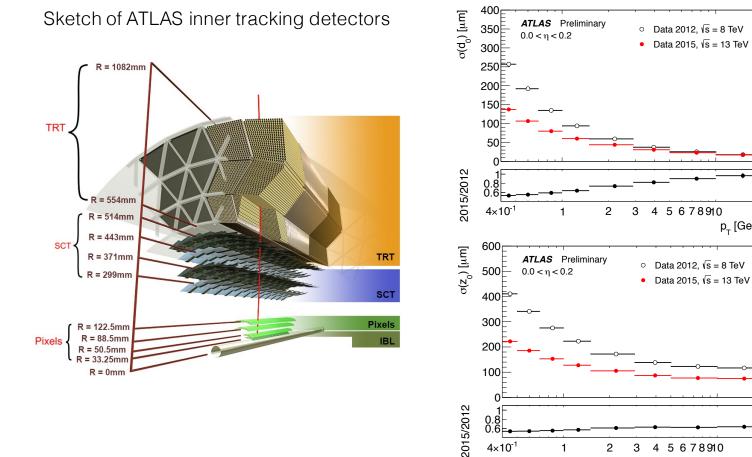

Infrastructure upgrades: magnet & cryogenic systems, additional muon chamber shielding, new beam pipes

Detector consolidation: muon chamber completion $(1.0 < |\eta| < 1.3)$ & replacements, calorimeter electronics repairs, improved inner detector read-out capability to cope with 100 kHz L1 trigger rate, new pixel detector services and module repairs

New topological L1 trigger and new central trigger processor, restructured high-level trigger

New Insertable B-layer: fourth pixel layer at 3.3 cm from beam, consisting of planar & 3D (forward) silicon sensors, smaller pixels

New software, new production system, new analysis model, ...



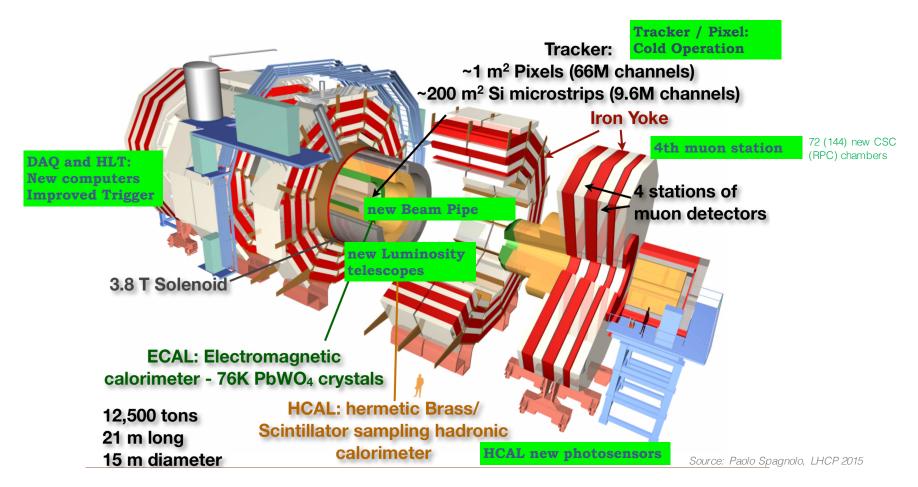
ATLAS inner tracking performance

[ATL-PHYS-PUB-2015-018

ATLAS tracking in Run-2 features the new IBL, reduced material within acceptance, and algorithmic improvements (eg, huge speed-up, tracking in dense environment [ATL-PHYS-PUB-2015-006])

Impact parameter resolution improvement from IBL

Measured improvement of impact parameter resolution with **IBL** depending on track p_T


20

20 p_{_} [GeV]

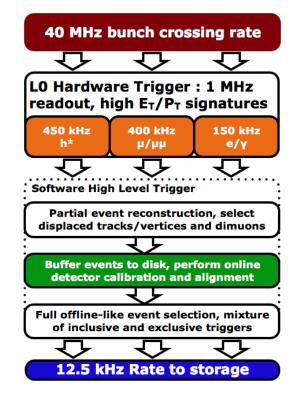
p_{_} [GeV]

CMS improvements for Run-2

Also significant updates and improvements

- Also: Multithreaded and more efficient reconstruction at CERN and Tier-1
 - New compact mini-AOD format (~10% of AOD)
 - Large efforts on improved (out-of-time) pileup mitigation

LHCb improvements for Run-2

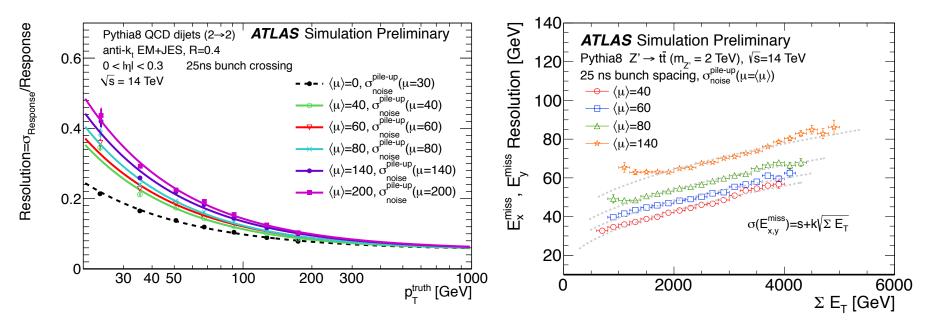

Big effort in trigger area (among others)

Detector consolidation: muon HV and grounding, 15% PMTs replace in HCAL, ECAL monitoring fibres replaced, module repairs in OT, HPD exchange in RICH, fixes in cooling, gas, power, shielding, ...

HeRSCheL: new scintillating counters to extend LHCb coverage to high rapidity (CEP, diffraction, ...)

Trigger upgrade — split trigger:

- All 1st stage (HLT1) output stored on disk
- Used for real-time calibration and alignment
- 2nd stage (HLT2) uses offline-quality calibration
- 5 kHz of 12 kHz to Turbo stream:
 - Objects produced by trigger are stored
 - No raw event → smaller event size
 - Used for high-yield channels (charm, J/ψ , ...)



Detector performance

The performance of physics object reconstruction degrades with pileup

Pileup dependence mitigated by dedicated methods, but expect moderate decrease of electron/photon efficiency and resolution, and increase of fake rate. Muons less affected (main impact on trigger).

More difficult for tau ($H \rightarrow \tau \tau$), jets and missing transverse momentum:

The jet substructure can be resolved (eg, jet mass) with "grooming" techniques in high-pileup scenarios Overall, no significant performance degradation expected during Run-2, some effects in Run-3

Run-2 should increase Higgs sample by factor of ~10, ttH by factor of ~20

Higgs mass already well known (0.2%), but further improvement and – important – cross-check needed
Higgs width (SM: 4.2 MeV) cannot be directly measured; indirect constraints possible
Higgs spin & parity established as 0⁺, but need to investigate possible *CP*-odd admixtures
Higgs couplings can be overconstrained from channel-wise (categorised) measurements

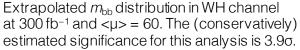
What is left to complete after Run-1?

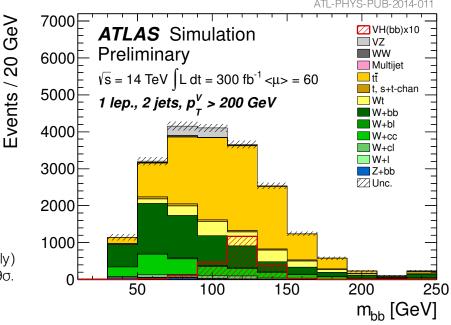
- Complete observation of $H \rightarrow \tau \tau$
- Observe $H \rightarrow bb$
- Observe ttH and W/Z+H production (at large luminosity $H \rightarrow \gamma\gamma$ will be best for ttH, ATL-PHYS-PUB-2014-012)

What are long-term developments?

- Search for $H \rightarrow \mu\mu$ (Run-1 limit: ~7.5 × σ_{SM})
- Search for $H \rightarrow Z\gamma$ (Run-1 limit: ~9.5 × σ_{SM})
- Search for di-Higgs production

And always with high priority:

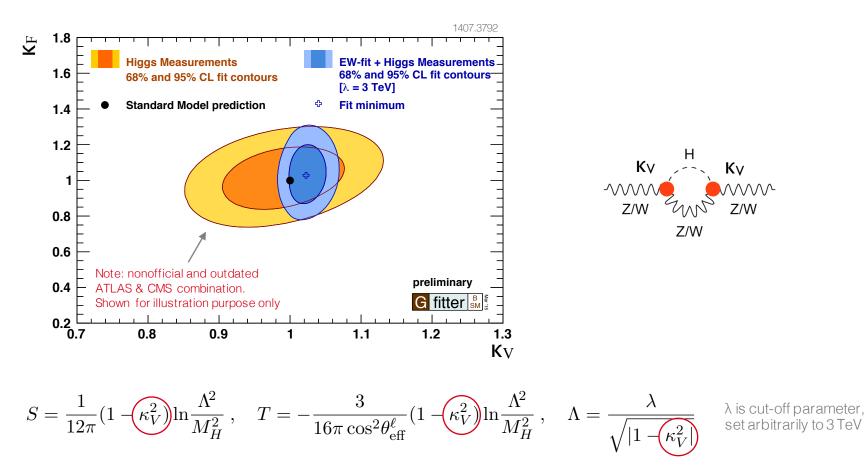

- Improve global coupling constraints
- Fiducial and differential cross-section measurements
- Searches for CPV, and for rare (eg, $H \rightarrow J/\psi \gamma$), forbidden (eg, $H \rightarrow \tau \mu$) and invisible decays (eg, VBF+ E_T^{miss})


Run-2 should increase Higgs sample by factor of ~10, ttH by factor of ~20

Higgs mass already well known (0.2%), but further improvement and – important – cross-check needed Higgs width (SM: 4.2 MeV) cannot be directly measured; indirect constraints possible Higgs spin & parity established as 0⁺, but need to investigate possible *CP*-odd admixtures Higgs couplings can be overconstrained from channel-wise (categorised) measurements

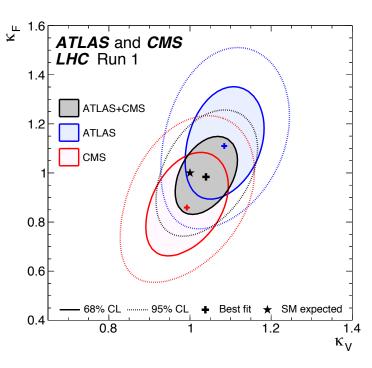
What is left to complete after Run-1?

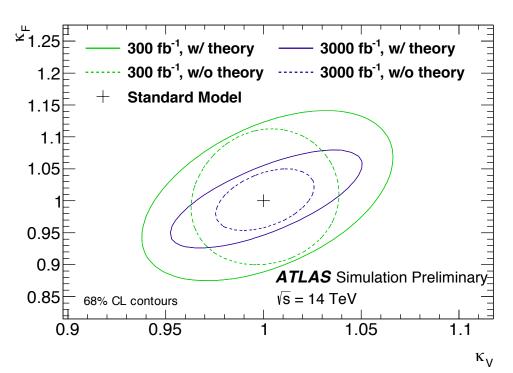
- Complete observation of $H \rightarrow \tau \tau$
- Observe $H \rightarrow bb$
- Observe ttH and W/Z+H production



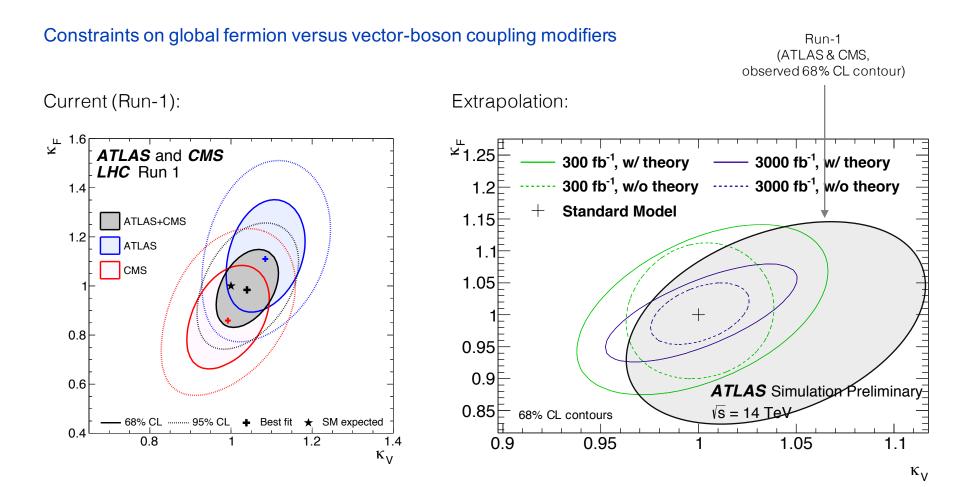
Can combine LHC measurement with constraints on κ_V from electroweak precision data

Constraints on global fermion versus vector-boson coupling modifiers


Constraints from global EW fit through "oblique parameters" S, T (SM: S = T = 0), parameterizing new physics contributions to electroweak observables through loop diagrams involving massive W and Z bosons

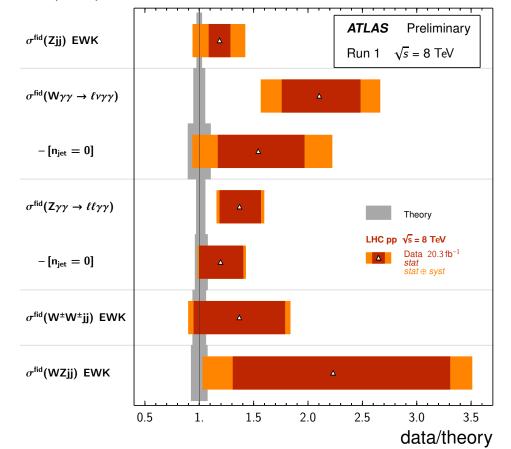

(Conservative) extrapolation of Higgs coupling measurements

Constraints on global fermion versus vector-boson coupling modifiers


Current (Run-1):

Extrapolation:

(Conservative) extrapolation of Higgs coupling measurements

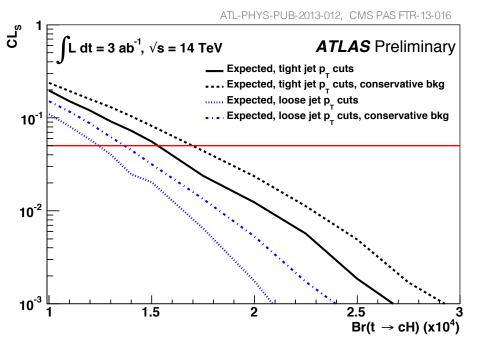


More Standard Model physics

Continuous gain in precision and reach for rare or suppressed processes

High-profile measurements:

- *M_W* and sin²θ_W: discussed before (work on reduction of physics modelling uncertainties required)
- Triple (TGC) and quartic (QGC) gauge boson couplings in diboson and triboson events also via differential cross-section measurements especially at high p_T and mass. This includes VBF and VBS diboson production
- QCD tests with further precision differential cross-sections measurements of Z/W/γ + jets, also detailed studies of V + qq VBF production.
- PDF constraints from high-precision fiducial and differential Z/W/γ crosssection measurements


VBF, VBS, and Triboson Cross Section Measurements Status: June 2016

Top physics

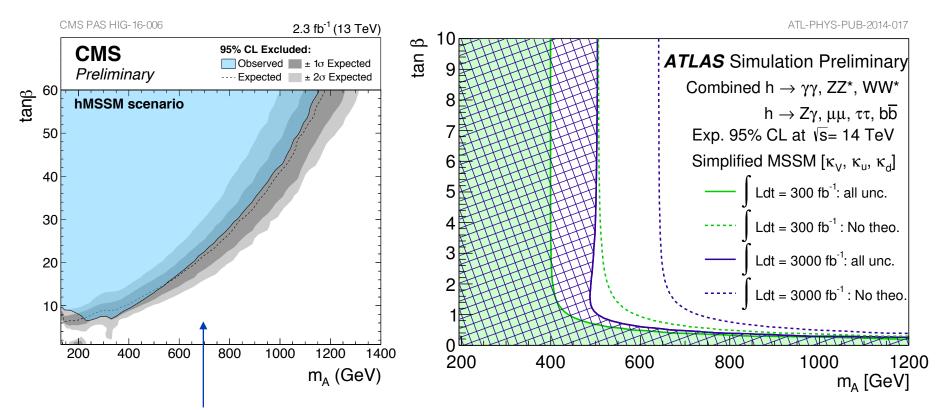
Continuous gain in precision and reach for rare or suppressed processes

High-profile measurements:

- Mass: discussed before
- Differential cross-sections of top charge asymmetry, spin correlations, H_{T} , etc. are important theory tests
- Rare processes such as tb, ttZ, ttW, ttγ inclusively & differentially, constraints on anomalous couplings
- Forbidden processes such as the FCNC transitions t \rightarrow qH, qZ, qy, qg (q = u,c), also t \rightarrow d/s+W

Numbers: at 100 fb⁻¹, LHC will have produced (13 TeV numbers, summed over charges):

- → 83M top pairs,
- → 22M t-channel top, 7M Wt, 1M s-channel top,
- → 70k tZ, 6k tH,
- → 170k tty, 80k ttZ, 60k ttW, ...

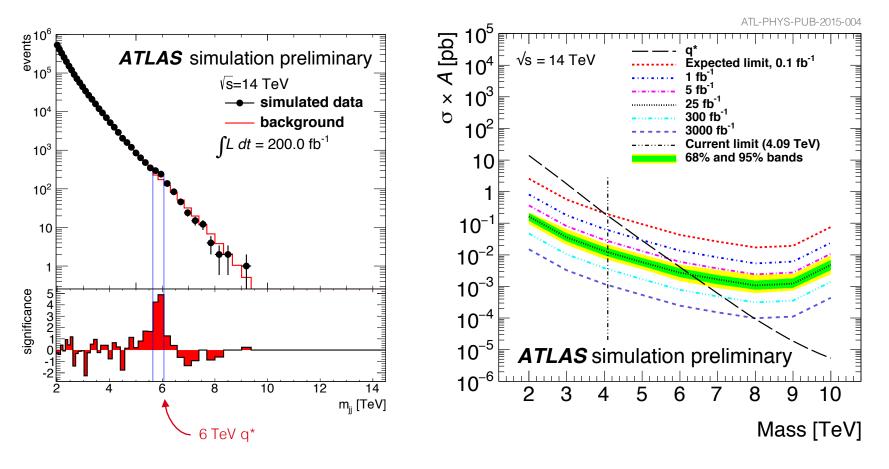

Limit on t \rightarrow cH($\rightarrow \gamma\gamma$) branching ratio estimated for the full HL-LHC: ~0.015% (current 8 TeV: < 0.46%)

CMS for t \rightarrow cZ: current/300/3000 fb^-1 limit: < 0.10% / 0.027% / 0.010%

Constraints on new physics from coupling measurements

Example application for constraint on MSSM Higgs from Higgs coupling fit

Constraints on m_A and tan β in simplified MSSM model from direct H/A $\rightarrow \pi$ searches (left – current constraint), and from an extrapolation of global Higgs coupling measurements (right)


 $A \rightarrow tt$ is dominant decay beyond top-pair production threshold and for low tan β . Very difficult channel due to interference with the continuum top pair contribution deteriorating the (broad) tt mass peak

Searches

Will always stay a central piece of the LHC physics programme as a discovery machine

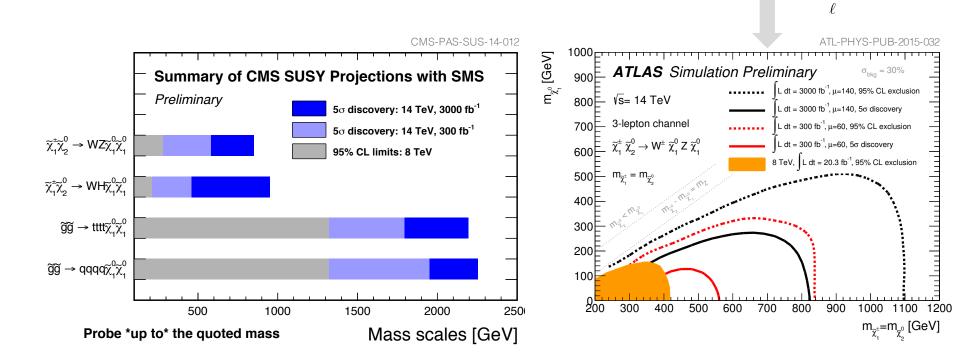
Still huge sensitivity increase this year, but will slow down with the progress of Run-2 and after. Searches gradually move from highest masses to lower cross-sections and difficult phase space regimes

Example: dijet resonance search (interpretation with excited u & d quarks $q^* \rightarrow qg$)

Searches

Will always stay a central piece of the LHC physics programme as a discovery machine

p

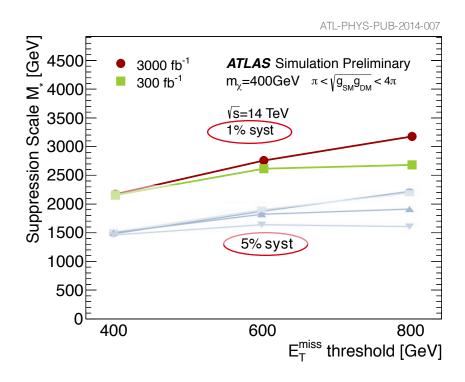

p

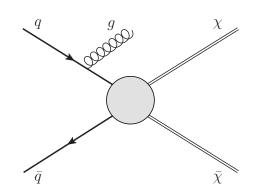
 $\tilde{\chi}_1^{\pm}$

 χ_2^{o}

 $\tilde{\chi}_1^0$

SUSY searches will move to low cross-section electroweak production and compressed scenarios

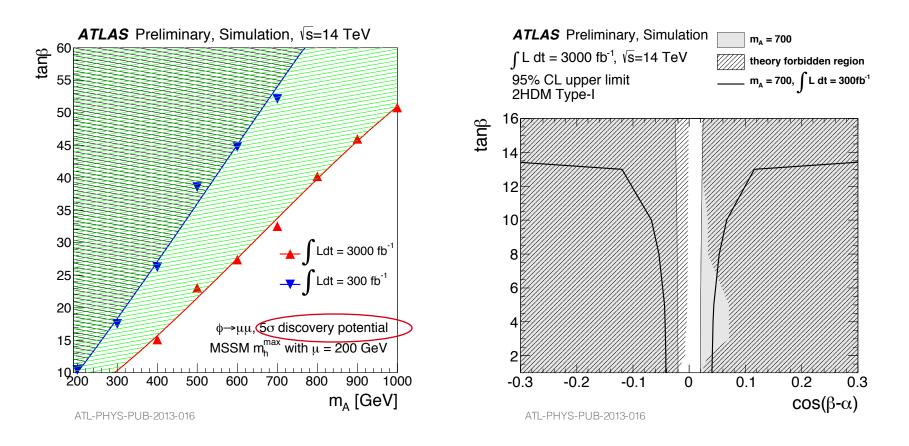


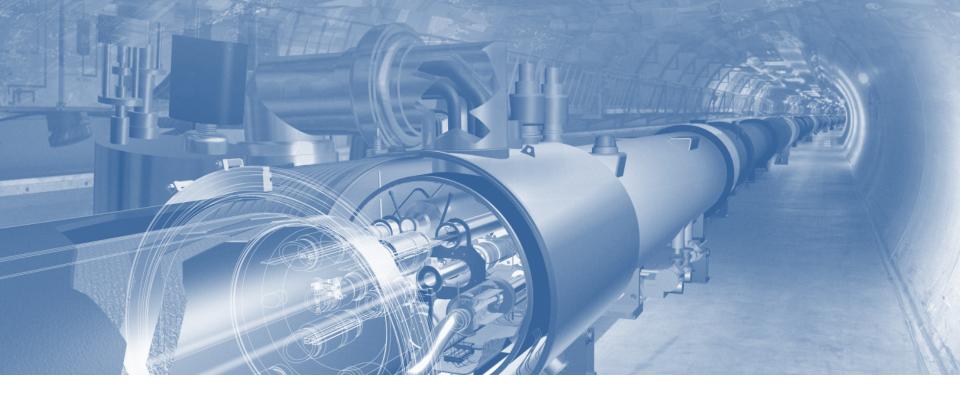

Searches

Will always stay a central piece of the LHC physics programme as a discovery machine

The sensitivity of dark matter searches looking for an excess in the high E_T^{miss} tail depends strongly on the systematic uncertainty achieved for the irreducible background \rightarrow meets SM analysis efforts

D5 vector operator: $\frac{1}{M_{\star}^2} \bar{\chi} \gamma^{\mu} \chi \bar{q} \gamma_{\mu} q$





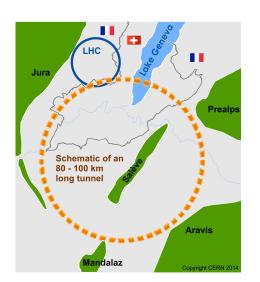
Searches for additional Higgs bosons

The discovery potential for H/A $\rightarrow \pi$ is compromised for large m_A and low tan β where the H/A decays predominantly to top pairs with a deteriorating interference pattern with the continuum top pair contribution

Production of gg $\rightarrow A \rightarrow Z(\rightarrow \ell \ell) h(\rightarrow bb)$ in the 2HDM can be discovered for low tan β and at least moderate $|\cos(\beta - \alpha)|$ up to and beyond $m_A = 700 \text{ GeV}$

Beyond the HL-LHC

Only a very brief enumeration of projects


Future hadron collider projects in a nutshell

The next discovery machine

HL-LHC: $E_{CM} = 14 \text{ TeV}$, 3 ab⁻¹, 2026~2035... (formally approved as *project* by CERN council)

Future Circular Collider FCC-hh (CERN):

- $E_{\rm CM} \sim 100 \,{\rm TeV}$ in 100 km ring, $L \sim 2 \times 10^{35} \,{\rm s}^{-1} {\rm cm}^{-2}$
- ~16 T magnets, possibly HE-LHC ($E_{\rm CM}$ ~ 28 TeV) as intermediate stage
- Huge detectors for muon p_T measurement
- Possible start of physics ~ 2035
- Includes HE-LHC as project step

Parameter	FCC-hh		SppC	LHC	HL LHC
collision energy cms [TeV]	100		71.2	14	
dipole field [T]	16		20	8.3	
# IP	2 main + 2		2	2 main + 2	
bunch intensity [10 ¹¹]	1	1 (0.2)	2	1.1	2.2
bunch spacing [ns]	25	25 (5)	25	25	25
luminosity/lp [10 ³⁴ cm ⁻² s ⁻¹]	5	~25	12	1	5
events/bunch crossing	170	~850 (170)	400	27	135
stored energy/beam [GJ]	8.4		6.6	0.36	0.7
E-loss/turn synchrotron radiation/beam	5 MeV 3 MW		2 MeV 5.8 MW	7 keV 5.4 kW	7 keV 9.5 kW

SppC (China):

- $E_{\rm CM} \sim 71 \, {\rm TeV}$ in 55 km ring, $L \sim 1 \times 10^{35} \, {\rm s}^{-1} {\rm cm}^{-2}$
- Requires very high gradient dipole magnets ~ 20 T
- Possible start of physics ~ 2042

Future e⁻e⁺ collider projects in a nutshell

Measure EW & EWSB sector to highest precision

International Linear Collider ILC (host candidate: Japan)

- 20 years of R&D, mature technology, ~32 MV/m accelerating gradient ~ xFEL at DESY (45 MV/m for 1 TeV)
- $E_{CM} \sim 500-1000$ GeV in 31–45 km total length, $L \sim 1.8 \times 10^{34}$ s⁻¹cm⁻², only one interaction region
- nm beam size, possible start of physics ~ 2030

Compact Linear Collider CLIC (CERN)

- High-gradient 2-beam scheme*: 100 MV/m gradient
- $E_{\rm CM} \sim 380-3000$ GeV, 11–50 km total length, $L \sim a$ few $\times 10^{34}$ s⁻¹cm⁻², only one interaction region
- 0.5 ns bunch distance, nm beam size, large beamstrahlung, physics ~ 2035

Future Circular Collider FCC-ee (CERN):

- *E*_{CM} ~ 90–350 GeV in 2 rings (90k bunches), *L* ~ 70–1.3 × 10³⁴ s⁻¹cm⁻²
- Synchrotron power (E⁴/Rup to 7.5 GeV/turn): 100 MW (LEP-2: 22 MW)

Circular EP collider CEPC (China):

- $E_{\rm CM} \sim 240 \,{\rm GeV}, \, L \sim 2 \times 10^{34} \,{\rm s}^{-1} {\rm cm}^{-2}$
- Single ring, 50 bunches
- Possible start of physics ~ 2028

FCC-ee LEP2 parameter CepC energy/beam [GeV] 45 120 175 120 105 bunches/beam 770 78 50 4 90000 beam current [mA] 16.6 3 1450 30 6.6 luminosity/IP x 10³⁴ cm⁻²s⁻¹ 0.0012 70 5 1.3 2.0 energy loss/turn [GeV] 0.03 1.67 7.55 3.1 3.34 synchrotron power [MW] 100 103 22 RF voltage [GV] 0.08 3.0 10 6.9 3.5

*A low energy, high current, "drive" beam is decelerated in power extraction structures and the RF power is transferred to the cavities that accelerate the main beam