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Motivation: Effective Field Theory

Parameterize new physics using the maximum information
available from the SM:

To extend the SM as an EFT:
• Fields.

• Interactions.
• How to expand the parameters:

Bottom-up description of the SM.

LEFT = L(0) + L(1) + L(2) + ...
∼ Λ0 ∼ Λ1 ∼ Λ2
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available from the SM:

To extend the SM as an EFT:
• Fields.

• Interactions.
• How to expand the parameters:

Bottom-up description of the SM.

Bottom-up:
Dimensional expansion for physics above the
scales of the SM, expanding in terms of an
energy scale (cut-off energy where NP is ex-
pected).
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The Standard Model as an Effective Field
Theory

To construct the Effective Lagrangian:

• The EFT is constructed using the SM fields:

• The SM includes all the possible dim-4 operators: L(0) = LSM .

• Symmetries of the SM imposed (Lorentz and gauge invariance are assumed).

• New particles are produced only at the new scale m ∼ Λ: kinematically their
production is not allowed before this value.

• Any Li term should have the same degrees of freedom as the SM.

• When baryon and lepton numbers are conserved, only operators with even
dim can be constructed:

• Restrictions on the coefficients come from high precision measurements.

• The most stronger constraints come from fermionic interactions, so we
concentrate on bosonic searches
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• Restrictions on the coefficients come from high precision measurements.

• The most stronger constraints come from fermionic interactions, so we
concentrate on bosonic searches : electroweak precision tests are sensitive
observables to constraint NP.

Genessis Perez (ITP - KIT) GK Workshop 2016 29.09.2016 4 / 20



New Physics from Effective Field Theory

LEFT = LSM +
1

Λ2

∑
i

ciOi +
1

Λ4

[∑
Si

cSiOSi +
1

Λ4

∑
Ti

cTiOTi +
1

Λ4

∑
Mi

cMiOMi

]

Dim-6 Operators
They affect triple and quartic vector
boson couplings (ATGCs & AQGCs,
respectively); therefore, the deviations
from the SM values cannot be treated
separately.

e.g. OWWW = Tr
[
WµνW νρW ν

ρ

]
OWWW ZWW AWW WWWW

ZZWW ZAWW AAWW

TGCs are strongly constrained
(e.g. by the LEP experiments).

Dim-8 Operators

• An independent parameterization
of QGCs is possible.

• Some NP effects appear as dim-8
operators, e.g. heavy resonances

e.g.

OS0 =
[
(DµΦ)† DνΦ

]
×
[
(DµΦ)† DνΦ

]
OT 0 WWWW WWZZ

ZZZZ
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Dim-8 Operators for Vector Boson Scattering
The dim-8 operators can be divided into:

• Operators built from Higgs doublet and covariant derivatives
only, OSi . It affects only massive vector bosons (longitudinally
polarized particles).

OS0 =
[
(DµΦ)†DνΦ

]
×
[
(DµΦ)†DνΦ

]
(1)

• Operators containing only field strenght tensors, OTi . Therefore,
only transverse polarizations are of importance.

OT0 = Tr [WµνW
µν ]× Tr

[
WαβW

αβ
]

(2)

• Operators built from field strength tensors, Higgs doublet and
covariant derivatives, OMi . A mixture between transverse and
longitudinal polarization.

OM0 = Tr [WµνW
µν ]×

[
(DβΦ)†DβΦ

]
(3)
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Example: WW→WW Scattering

OS0, OS1

OT 0, OT 1, OT 2

OM0, OM1, OM6, OM7

L = LSM + cS0
Λ4 OS0

The matrix element can be written as,

M = Jµ13(q1)Jµ24(q2) (mµν,SM + mµν,dim−8) (4)

For this process, the amplitude given by equation (1) is

mS0 ∝ ε(q1, λ1) · ε(q2, λ2)ε∗(q3, λ3) · ε∗(q4, λ4) (5)

Genessis Perez (ITP - KIT) GK Workshop 2016 29.09.2016 7 / 20



When these anomalous couplings are considered, the cross section falls off
asymptotically with a slower rate than expected.
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dim-8 AQGCs K-matrix
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The S-Matrix for Vector Boson Scattering

Recall: 2→2 scattering.

The transition amplitude for an initial state |n〉 to a final state |m〉 is given by
〈m|S |n〉, where S is a linear operator, called the S-matrix, and it is unitary.

Properties of the S-matrix

• The S-matrix can be decomposed usefully into two parts, where
T describes a non-trivial scattering:

S = 1 + i T (6)

• As S have to be unitary:

SS† = 1 (7)

therefore,

T †T = −i
(
T − T †

)
(8)
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For two particle scattering: p1 p2 → p3 p4

The T-matrix is related to the scattering amplitude M(p1p2 → p3p4)

〈p3, p4|T |p1, p2〉 = (2π)4δ(4)(p1 + p2 − p3 − p4)M . (9)

The differential cross section can be written as,

dσ

dΩ
=

1

64π2s
|M|2. (10)

The equation (7) sets bounds on T , and therefore on the cross
sections.
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The Unitary problem:
Partial Wave Decomposition
Using the partial wave decomposition (simplified version), it is possible to write the
scattering amplitude M(s, θ) as

M(s, θ) = 16π
∑

j

(2j + 1)Pj (cos θ)Aj (11)

where, Aj is the partial wave and Pj (cos θ) Legendre polynomials.

Using the orthogonal properties of the Legendre polynomials, and the optical

theorem, a unitarity bound is set.

The Argand Circle, with radio 1
2

and center i
2
.

| Aj −
i

2
|≤ 1

2
(12)

⇒ Re(Aj ) <
1

2
(13)

Scattering amplitudes are not allowed
to grow proportional with energy,

because the σ becomes unphysical (it
violates unitarity).
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To obtain a valid prediction, which does not violate any fundamental law, a
unitarization scheme is needed to reconstruct the amplitudes for the anomalous

couplings.
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Restoring Unitarity

Unitarity considerations have been used to spot the energy region where underlaying
new physics could arise: an incomplete description of the physics symptom.

Some unitarization schemes:
Form Factor unitarization

A function F(s) can be applied to
ensure unitarity at high energies:
it is multiplied to the couplings, to
suppress the tail of the amplitudes
arising from the operators.

K-matrix formalism

The real scattering amplitudes are pro-
jected onto the Argand circle to restore
unitarity, using a Cayley transform of the
S-matrix: the K-matrix.

S =
1 + iK/2

1− iK/2
(14)

Unitarity bounds are derived from the partial wave analysis of the on-shell 2→ 2
scattering amplitudes, but the LHC processes are off-shell:

How do we restore unitarity for off-shell processes?
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Implementing the Unitarization

J. Baglio et al. [arXiv:1107.4038]

�A fully flexible parton level Monte Carlo program for the simulation of vector
boson fusion, double and triple ector boson production in hadronic collisions at
next to leading order in the strong coupling constant. It includes Higgs and vector
boson decays with full spin correlations and all off-shell effects.�

M = Jµ13(q1)Jµ24(q2) (mµν,SM + mµν,dim−8)
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The on-shell/off-shell approach

mµν,dim−8 = DV1
µα(q1) DV2

νβ(q2) mαβγδ
AGCs (V1V2 → V3V4) DV3

γξ(q3)DV4
δρ (q4)jξ56jρ78 (15)

Using the properties of the polarization vectors,∑
polarizations ε

∗µ(pk )εν(pj ) = −gµν + N(pk , pj )pµk pνj

So, DVk
µα(qk ) = dk

∑
λ ε
∗
λ,µ(qk )ελ,α(qk ) (with dk = i

q2
k
−m2

Vk

).

∴ mµν = d1d2

∑
λ1,λ2

ε∗λ1,µ(q1) ε∗λ2,ν(q2)mon/off (λ1, λ2) (16)

mon/off (λ1, λ2) =
∑
λ3,λ4

AQC (λ1, λ2, λ3, λ4)Z3(λ3)Z4(λ4) (17)

where, Zk (λk ) = dkελk ,i (qk )j i

and

AQC (λ1, λ2, λ3, λ4) ∝ fS0ε(q1, λ1)· ε(q2, λ2)ε∗(q3, λ3)· ε∗(q4, λ4)
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A (λ1, λ2, λ3, λ4) ∝ fS0 [ε(q1, λ1)· ε(q2, λ2) ε∗(q3, λ3)· ε∗(q4, λ4)]
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A (λ1, λ2, λ3, λ4) ∝ fT0 { (
[
(q3· ε(q2, λ2))

(
q2· ε∗(q3, λ3)

)
−

(
ε∗(q3, λ3)· ε(q2, λ2)

)
(q3· q2)

][
(q4· ε(q1, λ1))

(
q1· ε∗(q4, λ4)

)
−

(
ε∗(q4, λ4)· ε(q1, λ1)

)
(q4· q1)

]
)

+(
[
(q3· ε(q1, λ1))

(
q1· ε∗(q3, λ3)

)
−

(
ε∗(q3, λ3)· ε(q1, λ1)

)
(q3· q1)

][
(q4· ε(q2, λ2))

(
q2· ε∗(q4, λ4)

)
−

(
ε∗(q4, λ4)· ε(q2, λ2)

)
(q4· q2)

]
) }
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The analytic K-Matrix
Using the partial wave decomposition, taking into account the helicities of the
states

AQC (λ1, λ2, λ3, λ4) = 16π
2∑

j=0

(2j + 1)aj (λ1, λ2, λ3, λ4)d j
αβ(θ) (18)

where, d j
αβ(θ) are the Wigner d-matrix, and aj (λ1, λ2, λ3, λ4) the amplitudes to be

unitarized.

So, using the bounds given by the Argand Circle, we look for the unitarize amplitudes,
using the eigenvalue of the Cayley-transform K-matrix:

ak =
a

1 + ia
(19)

The unitarize amplitudes are
then determined by,

a =
ak

1− iak
(20)
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Conclusions

• The effective Lagrangian formalism is a good theoretical way to describe

NP: it allows to describe new physics at some scale m2, without know-

ing the detailed dynamics of the system. We can rewrite NP with a

convenient parameterization in terms of the SM fields.

• The dim-8 operators within the sensitivity level at the LHC violates uni-

tarity of the S-matrix.

• Unitarity bounds can be calculated using the partial wave decomposition

for the amplitudes of the vector boson scattering.

• We use the analytic K-matrix formalism, to project the amplitudes onto

the unitarity circle (Argand circle) and restore unitarity. However, this

introduce a model dependence.
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Thank you
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