

Anomalous couplings in WZ production beyond NLO QCD

Robin Roth | 26.09.2016

in collaboration with Francisco Campanario, Sebastian Sapeta, Dieter Zeppenfeld

GK WORKSHOP 2016, FREUDENSTADT

www.kit.edu

Motivation

Goal

- test the Standard Model (SM) at the LHC with the highest possible precision
- look for deviations from the SM in a model independent way

Methods

- more precise SM prediction, reduced theory error $\Rightarrow \bar{n}NLO$
- parametrize beyond-SM effects ⇒ Anomalous Couplings (AC) / EFT
- $\hfill \ensuremath{\,\bullet\)}$ improve analyses \Rightarrow better cuts and observables, dynamical jet veto

Tools

- VBFNLO: diboson production at NLO QCD with AC
- LoopSim: nNLO based on VBFNLO input

The Standard Model of Particle Physics

LHC Cross Sections

Standard Model Production Cross Section Measurements

Calculation of LHC cross sections

Robin Roth - Anomalous couplings in WZ production beyond NLO QCD

Diboson production at the LHC

Why Diboson

- leptonic decays: "easy" to tag, precise knowledge of final state
- access to triple gauge couplings, deviations in EW sector

Observables

- new resonances
- enhanced production at high energy ⇒ AC
- m_T, p_{TV}, p_{TI}
- decay angles, spin information

Hadron collision

Stefan Gieseke, Monte Carlo lectures

Stefan Gieseke, Monte Carlo lectures

Fixed Order Calculations

Perturbation Theory

- exact solution of interacting theory not know
- start from free particles and consider interactions as perturbations
- couplings ($\alpha = \frac{g^2}{4\pi}$) small
- expand in powers of the couplings
- Leading Order (= Born), NLO, ...

NLO Contributions

- Real emission (extra leg)
 - soft or collinear emissions divergent
 - at LO: jet definition/cuts

$$\propto rac{1}{
ho_g \cdot
ho_q} \propto rac{1}{E_q E_g (1 - \cos heta)}$$

- Virtual (extra loop)
 - divergent for small loop momenta
- KLN Theorem: Divergences cancel

Amplitude

Squared Amplitude

Precise Predictions

Idea

- "Giant QCD K-factors beyond NLO" [Rubin, Salam, Sapeta, 1006.2144]
- merge different multiplicity final states
 X@NLO + Xj@NLO = X@nnLO
- parton level
- use NLO events, interface to existing Monte Carlos programs

Properties

- preserve NLO total cross section
- exact tree-level and one-loop
- only singular two-loop contributions
- include dominant contributions from extra emissions, $O(\alpha_s \ln^2 p_{\text{Tiet}}/m_Z)$
- nearly NNLO in high-p_T tails

s)	2	$\sigma_0^{(2)}$	$\sigma_{1}^{(2)}$			
dool) /	1	$\sigma_0^{(1)}$	$\sigma_1^{(1)}$	$\sigma_2^{(1)}$		
	0	$\sigma_0^{(0)}$	$\sigma_1^{(0)}$	$\sigma_2^{(0)}$	$\sigma_3^{(0)}$	
		0	1	2	3	
k (leas)						

Idea

- "Giant QCD K-factors beyond NLO" [Rubin, Salam, Sapeta, 1006.2144]
- merge different multiplicity final states X@NLO + Xj@NLO = X@n
 NLO
- parton level
- use NLO events, interface to existing Monte Carlos programs

Properties

- preserve NLO total cross section
- exact tree-level and one-loop
- only singular two-loop contributions
- include dominant contributions from extra emissions, *O*(α_s ln² p_{Tiet}/m_Z)
- nearly NNLO in high-p_T tails

s)	2	$\sigma_{0}^{(2)}$	$\sigma_{1}^{(2)}$			
dool) /	1	$\sigma_0^{(1)}$	$\sigma_1^{(1)}$	$\sigma_2^{(1)}$		
	0	$\sigma_0^{(0)}$	$\sigma_1^{(0)}$	$\sigma_{2}^{(0)}$	$\sigma_3^{(0)}$	
		0	1	2	3	
k (legs)						
X@LO						

;

Idea

- "Giant QCD K-factors beyond NLO" [Rubin, Salam, Sapeta, 1006.2144]
- merge different multiplicity final states
 X@NLO + Xj@NLO = X@nnLO
- parton level
- use NLO events, interface to existing Monte Carlos programs

Properties

- preserve NLO total cross section
- exact tree-level and one-loop
- only singular two-loop contributions
- include dominant contributions from extra emissions, *O*(α_s ln² p_{Tiet}/m_Z)
- nearly NNLO in high-p_T tails

Idea

- "Giant QCD K-factors beyond NLO" [Rubin, Salam, Sapeta, 1006.2144]
- merge different multiplicity final states X@NLO + Xj@NLO = X@n
 NLO
- parton level
- use NLO events, interface to existing Monte Carlos programs

Properties

- preserve NLO total cross section
- exact tree-level and one-loop
- only singular two-loop contributions
- include dominant contributions from extra emissions, *O*(α_s ln² p_{Tiet}/m_Z)
- nearly NNLO in high-p_T tails

 $\sigma_0^{(2)}$ $\sigma_{1}^{(2)}$ 2 (loops) $\sigma_1^{(1)}$ $\sigma_0^{(1)}$ $\sigma_{2}^{(1)}$ 1 $\sigma_{0}^{(0)}$ $\sigma_1^{(0)}$ $\sigma_{2}^{(0)}$ $\sigma_{3}^{(0)}$ 0 0 2 3 1 . . . k (legs)

X@NNLO

Idea

- "Giant QCD K-factors beyond NLO" [Rubin, Salam, Sapeta, 1006.2144]
- merge different multiplicity final states
 X@NLO + Xj@NLO = X@nnLO
- parton level
- use NLO events, interface to existing Monte Carlos programs

Properties

- preserve NLO total cross section
- exact tree-level and one-loop
- only singular two-loop contributions
- include dominant contributions from extra emissions, *O*(α_s ln² p_{Tiet}/m_Z)
- nearly NNLO in high-p_T tails

Idea

- "Giant QCD K-factors beyond NLO" [Rubin, Salam, Sapeta, 1006.2144]
- merge different multiplicity final states X@NLO + Xj@NLO = X@n
 NLO
- parton level
- use NLO events, interface to existing Monte Carlos programs

Properties

- preserve NLO total cross section
- exact tree-level and one-loop
- only singular two-loop contributions
- include dominant contributions from extra emissions, *O*(α_s ln² p_{Tiet}/m_Z)
- nearly NNLO in high-p_T tails

(loops)

		0	1	2	3		
	0	$\sigma_0^{(0)}$	$\sigma_1^{(0)}$	$\sigma_{2}^{(0)}$	$\sigma_3^{(0)}$		
	1	$\sigma_0^{(1)}$	$\sigma_1^{(1)}$	$\sigma_2^{(1)}$			
2	2	$\sigma_0^{(-)}$	$\sigma_1^{(-)}$				

(2)

(2)

k (legs)

X+jet@NLO

Idea

- "Giant QCD K-factors beyond NLO" [Rubin, Salam, Sapeta, 1006.2144]
- merge different multiplicity final states X@NLO + Xj@NLO = X@n
 NLO
- parton level
- use NLO events, interface to existing Monte Carlos programs

Properties

- preserve NLO total cross section
- exact tree-level and one-loop
- only singular two-loop contributions
- include dominant contributions from extra emissions, *O*(α_s ln² p_{Tiet}/m_Z)
- nearly NNLO in high-p_T tails

nNLO for WZ production

Anomalous Couplings

SM as Effective Field Theory

- \bullet assume there are fields beyond the SM at a high mass scale Λ
- describe effects at lower (electro-weak) energy scales
- add higher-dimensional terms to Lagrangian $\mathcal{L} = \mathcal{L}_{SM} + \sum_i \frac{f_i}{\hbar^2} \mathcal{O}_i$

Building Blocks (SM Fields and Symmetries)

Higgs field Φ

• fermion fields ψ

• (covariant) derivative ∂^{μ} , D^{μ}

• field strength tensors $G^{\mu\nu}$, $W^{\mu\nu}$, $B^{\mu\nu}$

Contributions to WWZ vertex

At dimension 6 only 3 linear independent operators (assuming C, P conservation)

$$\begin{split} \mathcal{O}_{W} &= (D_{\mu} \Phi)^{\dagger} \, \hat{W}^{\mu\nu} \left(D_{\nu} \Phi \right), \\ \mathcal{O}_{WWW} &= \mathrm{Tr} \left[\hat{W}_{\mu\nu} \, \hat{W}^{\nu\rho} \, \hat{W}^{\mu}_{\rho} \right], \\ \mathcal{O}_{B} &= (D_{\mu} \Phi)^{\dagger} \, \hat{B}^{\mu\nu} \left(D_{\nu} \Phi \right) \end{split}$$

Validity of EFT approach

EFT assumptions

all NP scales well above observables, no resonances at measurable scales

• f/Λ^2 "small", depends on coupling: $\mathcal{O}(1)$ or $\mathcal{O}(\alpha_{\text{QED}})$

Power counting in Λ

$$\mathcal{M} = \mathcal{M}_{SM} + \underbrace{\mathcal{M}_{AC}^{d=6}}_{1/\Lambda^2} + \underbrace{\mathcal{M}_{AC}^{d=8}}_{1/\Lambda^4}$$
$$\mathcal{M}|^2 = \underbrace{|\mathcal{M}_{SM}|^2}_{+} + \underbrace{2\text{Re}\mathcal{M}_{SM}^*\mathcal{M}_{AC}^{d=6}}_{+} + \left|\mathcal{M}_{AC}^{d=6}\right|^2 + \underbrace{2\text{Re}\mathcal{M}_{SM}^*\mathcal{M}_{AC}^{d=8}}_{+} + \left|\mathcal{M}_{AC}^{d=8}\right|$$

 $1/\Lambda^4$

 $1/\Lambda^4$

• power-counting
$$\Lambda^{-4}$$
: $\left|\mathcal{M}_{AC}^{d=6}\right|^2$, $\mathcal{M}_{SM}^*\mathcal{M}_{AC}^{d=8}$?

 $1/\Lambda^2$

 \bullet conservative: experimental fit only in range where $\left|\mathcal{M}_{AC}\right|^2 \ll \mathcal{M}_{SM}^* \mathcal{M}_{AC}$

• but: \mathcal{M}_{SM} accidentally small (weak coupling compared to \mathcal{M}_{AC} , radiation zero) $\Rightarrow \mathcal{M}_{SM}^* \mathcal{M}_{AC}$ suppressed, $|\mathcal{M}_{AC}^{d=6}|^2$ leading $1/\Lambda^4$ term

 $1/\Lambda^0$

 $1/\Lambda^8$

Anomalous Couplings

Anomalous Couplings

AC for WZ production

AC for WZ production

AC for WZ production

Jet vetos

want VV + jets, not Vj + V

Traditional (fixed) jet veto

- don't allow any jets above a fixed p_T threshold
- introduces large logs log p_{Tveto}/m_{VV}
- cuts away relevant phase space: $m_{VV} \approx 1 \text{ TeV} \leftrightarrow p_{\text{Tjet}} = 50/300 \text{ GeV}$

Dynamical veto

[Campanario, RR, Zeppenfeld, 1410.4840]

- veto scaled depending on overall scale ⇒ smaller logs
- allow more QCD radiation in tails of EW distributions

$$\begin{split} x_{\text{jet}} &= \frac{\sum_{\text{jets}} \mathsf{E}_{\mathsf{T},i}}{\sum_{\text{jets}} \mathsf{E}_{\mathsf{T},i} + \mathsf{E}_{\mathsf{T},W} + \mathsf{E}_{\mathsf{T},Z}} \\ \mathsf{E}_{\mathsf{T}} &= \mathsf{E} \frac{\left| \vec{p}_{\mathsf{T}} \right|}{\left| \vec{\rho} \right|}, \text{alternatively } m_{\mathsf{T}}, p_{\mathsf{T}} \end{split}$$

Observable
$$x_{jet} = \frac{\sum_{jets} E_{T,i}}{\sum_{jets} E_{T,i} + E_{T,W} + E_{T,Z}}$$

Dynamical veto to improve AC sensitivity

Dynamical veto to improve AC sensitivity

Conclusion

Pushing the SM Frontier

- current default: NLO QCD, O(10%) theory uncertainty
- improve precision, LoopSim, NNLO, N³LO
- matching to parton shower, improving non-perturbative physics

Anomalous couplings in diboson production

- diboson production interesting channel to study triple gauge couplings
- EFT validity depends on coupling and phase space region

Interplay between precision and new physics

- higher orders might look similar to anomalous couplings
- increase sensitive to new physics ⇒ dynamical jet veto

$$x_{\text{jet}} = \frac{\sum_{\text{jets}} E_{\text{T},i}}{\sum_{\text{jets}} E_{\text{T},i} + E_{\text{T},W} + E_{\text{T},Z}}$$