Spacetime foam and modified dispersion relations

Fabrizio Sorba

Institute for Theoretical Physics Karlsruhe Institute of Technology

Workshop Bad Liebenzell, 2012

Fabrizio Sorba Spacetime foam and modified dispersion relations

向下 イヨト イヨト

 Study how a Lorentz-invariant model of spacetime foam modify the propagation of particles

白 ト く ヨ ト く ヨ ト

æ

▶ Quantum mechanics ⇒ quantum fluctuations

$$\Delta t \Delta E \geq \frac{\hbar}{2}$$

• General relativity:

 $Energy \iff Geometry$

quantum fluctuations of the geometry and topology of spacetime

 Scale of the fluctuations is expected to be the order of the Planck lenght

 $\delta\ell \sim 10^{-35}m$

- We take into account only topological fluctuations (defects, wormholes,...)
- We consider defects to be point-like

 $\lambda_{photon} \ll \delta \ell$

- ► Chiral gauge theory e.g. SO(10) (SO(10) → SU(3) × SU(2) × U(1))
- \blacktriangleright A single static topological defect (linear defect, wormhole) \rightarrow CPT anomaly
- \blacktriangleright In the U(1) subgroup of electromagnetism the anomalous term turns out to be

$$S_{CPT} = \frac{1}{32\pi} \int d^4x \, f_M(x, A_\mu) \epsilon^{\mu\nu\rho\sigma} F_{\mu\nu} F_{\rho\sigma} \tag{1}$$

¹F. R. Klinkhamer and C. Rupp, "Space-time foam, CPT anomaly, and photon propagation," Phys. Rev. D **70** (2004) 045020 [hep-th/0312032].

- For a large number of defect no exact calculation is practicable
- We assume the abelian anomalies to add up incoherently into a background field:

$$g(x) = \lambda \sum_{n} \epsilon_n h(x - x_n)$$

$$S_{A\mu} = -\frac{1}{4} \int d^4x \left\{ F_{\mu\nu} F^{\mu\nu} + g(x) \epsilon^{\alpha\beta\gamma\delta} F_{\alpha\beta} F_{\gamma\delta} \right\}$$
(2)

御 と く ヨ と く ヨ と …

Sprinkling

- Sprinkling is described as a Poisson process:
 - Divide spacetime into small boxes of volume V
 - \blacktriangleright Place a sprinkled point into each box with probability $P=\rho\,V$
 - \blacktriangleright The limit $V \rightarrow 0$ corresponds to the Poisson process
- The result is a Poisson distribution of points into spacetime:

$$P_n(V) = \frac{(\rho V)^n e^{-\rho V}}{n!}$$

- $P_n(V)$ is the probability to find n points into the 4-volume V
- The mean value is

$$\langle n(V) \rangle = \sum_{n} n P_n(V) = \rho V$$

 $\implies \rho$ represents the density of sprinkled points

- ► The Poisson process depends only on the spacetime volume V ⇒ it is Lorentz invariant
- It has been proved that even the individual realizations of the process are Lorentz invariant²
- Lorentz invariance here has the following meaning:
 "The discrete set of sprinkled points must not, in and of itself, serve to pick out a preferred reference frame"

²L. Bombelli, J. Henson and R. D. Sorkin, "Discreteness without symmetry breaking: A Theorem," Mod. Phys. Lett. A **24** (2009) 2579 [gr-qc/0605006].

• Example of sprinkling in 2d Minkowski spacetime:

Figure: A sprinkling of points as it looks in two different inertial frames

The mean density ρ is the same in both frames

イロト イヨト イヨト イヨト

Sprinkling

A not-invariant distribution:

Figure: A regular distribution of points as it looks in two different inertial frames

 ρ is uniform in the first case but not in the second

<ロ> <同> <同> <同> < 同> < 同>

Our model is based on the effective action:

$$S = \int d^4x \left\{ -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{m_0^2}{2} \left(\partial_\mu \phi \partial^\mu \phi - m_1^2 \phi^2 \right) + \phi \sum_{n=1}^{\infty} \epsilon_n \delta^4(x - x_n) - \frac{\lambda}{4} \phi \epsilon^{\alpha\beta\gamma\delta} F_{\alpha\beta} F_{\gamma\delta} \right\}$$
(3)

- the topological point-like defects are represented by delta functions
- the interaction between defects and photons is mediated by a scalar field

 \blacktriangleright Solving the scalar field equation (for $\lambda \ll 1)$ we obtain the photon action

$$S = -\frac{1}{4} \int d^4x \left\{ F_{\mu\nu} F^{\mu\nu} + g(x) \epsilon^{\alpha\beta\gamma\delta} F_{\alpha\beta} F_{\gamma\delta} \right\}$$

• in the anomalous term the factor g(x) is

$$g(x) = \int \frac{d^4k}{(2\pi)^4} \left(h(k) \sum_n \epsilon_n e^{ikx_n} \right) e^{-ikx}$$

where

$$h(k) = \lambda \Delta_{\phi}(k) = \frac{-\lambda}{m_0^2(k^2 - m_1^2 + i\epsilon)}$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

• The distribution of defects enters in the product g(q)g(p):

$$g(q)g(p) = \lambda^2 h(q)h(p) \left(\sum_n e^{i(q+p)x_n} + \sum_{n \neq m} \epsilon_n \epsilon_m e^{iqx_n} e^{ipx_m}\right)$$

 \blacktriangleright the sum over $n \neq m$ averages to zero, while

$$\sum_{n} e^{i(q+p)x_n} \simeq \rho \int d^4x \, e^{i(q+p)x} = (2\pi)^4 \rho \, \delta^4(q+p)$$

sprinkling ensures that $dn = \rho d^4 x$ independently of the frame $\implies g(q)g(p) = (2\pi)^4 \lambda^2 \rho h(q)^2 \delta^4(q+p)$ (4)

向下 イヨト イヨト

Calculations

Photon propagator, perturbative expansion:

$$\langle \Omega | A_{\mu}(a) A_{\nu}(b) | \Omega \rangle = \langle 0 | A_{\mu}(a) A_{\nu}(b) | 0 \rangle - i \int d^{4}x \, \langle 0 | A_{\mu}(a) A_{\nu}(b) \mathcal{H}_{int}(x) | 0 \rangle - \int d^{4}x \, d^{4}y \, \langle 0 | A_{\mu}(a) A_{\nu}(b) \mathcal{H}_{int}(x) \mathcal{H}_{int}(y) | 0 \rangle + \dots$$
(5)
$$\mathcal{H}_{int}(x) = -\mathcal{L}_{int}(x) = \frac{1}{2}g(x)\varepsilon^{\alpha\beta\rho\sigma}\partial_{\alpha}A_{\beta}(x)\partial_{\rho}A_{\sigma}(x)$$

Calculations

$$\begin{array}{l} \bullet \ O(\lambda^0): \\ D_{\mu\nu}(a-b) = g_{\mu\nu}\Delta_F(k) \qquad \Delta_F(k) = \frac{-i}{k^2 + i\epsilon} \\ \bullet \ O(\lambda^1): \\ B_{\mu\nu}(a-b) = 0 \qquad (\langle g(x) \rangle = 0) \\ \bullet \ O(\lambda^2): \\ C_{\mu\nu}(a-b) = \lambda^2 \int \frac{d^4k}{(2\pi)^4} \Delta_F(k) \Pi_{\mu\nu}(k) \, e^{-ik(a-b)} \\ \Pi_{\mu\nu}(k) = 3! \rho \, \delta^{\alpha}_{[\gamma} \, \delta^{\rho}_{\eta} \delta^{\beta}_{\nu]} g_{\mu\beta} \int \frac{d^4q}{(2\pi)^4} \, k_{\alpha} k^{\eta}(k_{\rho} - q_{\rho}) (k^{\gamma} - q^{\gamma}) \Delta^2_{\phi}(q) \Delta_F(k-q) \end{array}$$

・ロン ・四と ・ヨン ・ヨン

æ

Calculations $(\Pi_{\mu\nu}(k))$

- \blacktriangleright We apply the following techniques to manipulate $\Pi_{\mu\nu}(k)$:
 - Passarino-Veltman reduction:

$$\Pi_{\mu\nu}(k) = \left(g_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}\right)\Pi(k)$$

$$\Pi(k) = -\frac{4\rho}{m_0^4} \frac{1}{k^2 + i\epsilon} \int \frac{d^4q}{(2\pi)^4} \frac{q^2k^2 - (q\cdot k)^2}{(q^2 - m_1^2 + i\epsilon)^2} \frac{1}{(k-q)^2 + i\epsilon}$$

Dimensional regularization:

$$\Pi_{reg}(k) = -\frac{3\rho}{16\pi^2 m_0^4} \left\{ \frac{1}{\hat{\varepsilon}} + \frac{4}{3} - \frac{m_1^2}{k^2} - \log\frac{m_1^2}{\mu^2} - \left(1 - \frac{m_1^2}{k^2}\right)^2 \log\left(1 - \frac{k^2}{m_1^2} - i\epsilon\right) \right\}$$

• Renormalization $(\Pi_{ren}(k) = \Pi_{reg}(k) - \Pi_{reg}(m_1))$:

$$\Pi_{ren}(k) = \frac{3\rho}{16\pi^2 m_0^4} \left\{ \frac{m_1^2}{k^2} + \left(1 - \frac{m_1^2}{k^2}\right)^2 \log\left(1 - \frac{k^2}{m_1^2} - i\epsilon\right) - 1 \right\}$$

Modified dispersion relations

To the 2nd order the resummed photon propagator is

$$\overline{D_{\mu\nu}}(k) = g_{\mu\nu}\Delta_F(k) \left(1 - \lambda_{ren}\Pi_{ren}(k) + \lambda_{ren}^2\Pi_{ren}(k)^2 + \dots\right) \Rightarrow$$

$$\Rightarrow \overline{D_{\mu\nu}}(k) = \frac{-ig_{\mu\nu}}{k^2(1+\lambda_{ren}^2\Pi_{ren}(k))}$$

- The dispersion relations of the possible wave modes correspond to the poles of the propagator
- The dispersion equation is

$$k^{2}(1 + \lambda_{ren}^{2}\Pi_{ren}(k)) = 0$$
(7)

向下 イヨト イヨト

• $\Pi_{ren}(k)$ is regular in $k^2 = 0$

$$\lim_{k^2 \to 0} k^2 \Pi_{ren}(k) = 0$$

- \blacktriangleright \Rightarrow one solution is the standard dispersion relation
- ► $k^2(1 + \lambda_{ren}^2 \Pi_{ren}(k)) = 0$ has no other physical solutions
- The only possible dispersion relation is the conventional one,

$$k^2 = 0$$

The foam background does not introduce any modification

向下 イヨト イヨト

Modified dispersion relations, λ imaginary

$$\lambda \longrightarrow i\lambda \quad \Rightarrow \quad \mathcal{H}_{int}(x) \longrightarrow \mathcal{H}'_{int}(x) = i\mathcal{H}_{int}(x)$$
$$\mathcal{H}'_{int}(x) = \frac{i}{2}g(x)\varepsilon^{\alpha\beta\rho\sigma}\partial_{\alpha}A_{\beta}(x)\partial_{\rho}A_{\sigma}(x)$$

The new Hamiltonian is not more Hermitian,
but it is still
$$\mathcal{PT}$$
 symmetric ($\mathcal{PTH} = \mathcal{H}$)

- ► It has been shown³ that non-Hermitian but *PT*-symmetric Hamiltonians can coherently describe physical systems
- The dispersion equation is now

$$k^2(1 - \lambda_{ren}^2 \Pi_{ren}(k)) = 0$$

³C. M. Bender, S. Boettcher and P. Meisinger, "PT symmetric quantum mechanics," J. Math. Phys. **40** (1999) 2201 [quant-ph/9809072].

(4) (5) (4) (5) (5)

Modified dispersion relations, λ imaginary

In this case a second physically acceptable solution appears:

$$k^2 = \alpha(\gamma)m_1^2 \tag{8}$$

• where
$$\gamma \propto \lambda^2
ho$$
, $lpha \in [0,1]$

Figure: Several data points for the behaviour of $\alpha(\gamma)$

• Does $\alpha(\gamma)$ describe a phase transition?

$$\begin{cases} k^2 = 0 & \gamma < \gamma_c \\ k^2 = \alpha(\gamma)m_1^2 & \gamma > \gamma_c \end{cases}$$
(9)

- $\gamma \propto \rho$ suggests a relation with percolation phase transition
- Percolation:
 - Percolation theory studies the formation and properties of clusters of objects randomly distributed in space.
 - It exhibits a phase transition:
 - \blacktriangleright For densities smaller than a critical value ρ_c there are only clusters of finite size
 - \blacktriangleright For densities larger than ρ_c clusters of infinite size also appear

・ 同 ト ・ ヨ ト ・ ヨ ト …

Modified dispersion relations, percolative foam

►

- ► If there is a phase transition then $\alpha(\gamma)$ is the order parameter $\implies \alpha(\gamma) \propto (1 - \gamma_c/\gamma)^{\beta}$ (10)
- The critical exponent in 4D percolation is $\beta=0.64$

Figure: $\alpha(\gamma)$ interpolated by Eq. (10) with $\beta = 0.64$

- We studied the propagation of photons through a Lorentz invariant foam of topological point-like defects
 - The topological anomaly is encoded in the anomalous term $\mathcal{L}_{CPT} = -\frac{1}{4}g(x)\epsilon^{lphaeta\gamma\delta}F_{lphaeta}F_{\gamma\delta}$
 - Lorentz invariance is garanteed by the sprinkling process
- We found that:
 - For a real coupling constant the foam of defects does not introduce any modification
 - ► For an imaginary coupling a photon mass seems to emerge

$$m_{photon} = \alpha(\gamma)^{1/2} m_1$$

 The behaviour of the photon mass respect to the density of defects suggests a relation with the percolation phase transition, but this issue deserves further studies

・ 同 ト ・ ヨ ト ・ ヨ ト